首页> 外文OA文献 >Algorithms for group isomorphism via group extensions and cohomology
【2h】

Algorithms for group isomorphism via group extensions and cohomology

机译:通过组扩展和上同调的群同构算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The isomorphism problem for finite groups of order n (GpI) has long beenknown to be solvable in $n^{\log n+O(1)}$ time, but only recently werepolynomial-time algorithms designed for several interesting group classes.Inspired by recent progress, we revisit the strategy for GpI via the extensiontheory of groups. The extension theory describes how a normal subgroup N is related to G/N viaG, and this naturally leads to a divide-and-conquer strategy that splits GpIinto two subproblems: one regarding group actions on other groups, and oneregarding group cohomology. When the normal subgroup N is abelian, thisstrategy is well-known. Our first contribution is to extend this strategy tohandle the case when N is not necessarily abelian. This allows us to provide aunified explanation of all recent polynomial-time algorithms for special groupclasses. Guided by this strategy, to make further progress on GpI, we considercentral-radical groups, proposed in Babai et al. (SODA 2011): the class ofgroups such that G mod its center has no abelian normal subgroups. This classis a natural extension of the group class considered by Babai et al. (ICALP2012), namely those groups with no abelian normal subgroups. Following theabove strategy, we solve GpI in $n^{O(\log \log n)}$ time for central-radicalgroups, and in polynomial time for several prominent subclasses ofcentral-radical groups. We also solve GpI in $n^{O(\log\log n)}$ time forgroups whose solvable normal subgroups are elementary abelian but notnecessarily central. As far as we are aware, this is the first time there havebeen worst-case guarantees on a $n^{o(\log n)}$-time algorithm that tacklesboth aspects of GpI---actions and cohomology---simultaneously.
机译:长期以来,已知n阶有限组(GpI)的同构问题可以在$ n ^ {\ log n + O(1)} $时间内解决,但直到最近才针对多项有趣的组类设计了多项式时间算法。根据最近的进展,我们通过群体扩展理论重新审视了GpI策略。扩展理论描述了正常子组N如何通过G与G / N相关联,这自然导致了一种分而治之的策略,该策略将GpIin分为两个子问题:一个关于其他组的组动作,另一个关于组同调。当正常子组N为阿贝尔语时,此策略是众所周知的。我们的第一个贡献是扩展了该策略,以处理N不一定是阿贝尔的情况。这使我们能够为特殊组类提供所有最新多项式时间算法的统一解释。在这一策略的指导下,为了在GpI上取得进一步的进展,我们考虑了Babai等人提出的中心自由基集团。 (SODA 2011):使得G mod其中心没有阿贝尔正态子群的群的类。此类是Babai等人所考虑的小组类别的自然扩展。 (ICALP2012),即没有阿贝尔正态子组的那些组。按照上述策略,对于中心自由基组,我们在$ n ^ {O(\ log \ log n)} $时间内求解GpI,对于中心自由基组的几个重要子类,在多项式时间内求解GpI。对于可解决的正常子组是基本阿贝尔语但不必要居中的组,我们也可以在$ n ^ {O(\ log \ log n)} $时间内解决GpI。据我们所知,这是第一次在$ n ^ {o(\ log n)} $-time算法上同时解决GpI(动作和同调)这两个方面的最坏情况的保证。

著录项

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号